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Abstract
We study the quantum mechanics of an infinitesimally thin spherical fluid shell
of radius R, having continuous charge and mass densities e/a2 and m/a2 per
unit area, with a � R, and subject to a Debye-type cut-off on surface-parallel
wave numbers. Attention is confined to the regime µ ≡ 4πe2R/mc2a2 � 1,
where nonretarded (NR) Coulomb forces dominate, and the coupling to the
quantized Maxwell field is only a weak perturbation. The unperturbed ground-
state energy BNR is of order h̄(e2/ma7)1/2R2. Half of BNR is kinetic energy,
localized on the shell; the other half is Coulomb energy, with a density u
appreciable only within distances of order a from the shell. The pressure
P = 3BNR/8πR3 follows directly from the principle of virtual work: more
detailed analysis shows that P/3 comes from Coulomb forces, and 2P/3 from
the zero-point motion of the fluid. It seems likely that u and P behave in
much the same way also for large µ. The purely Coulombic system has stable
discrete-frequency excitations (plasmons); to leading order the perturbation
displaces the frequencies and allows a plasmon to decay into a photon. The
displacements and decay rates tally with what one infers from the exact classical
multipole phase shifts, and from the already-known energy for arbitrary
values of µ.

PACS numbers: 03.65.−w, 03.70.+k, 11.10.−z, 12.20.−m, 36.40.Gk,
42.50.Pq

1. Introduction and conclusions

1.1. Background

Recent work has found the Casimir binding energies B for a hydrodynamic model of hollow
spherical plasma shells with radius R, developing approximations flexible enough to deliver
both the dominant components governed by unretarded Coulomb interactions, and also, under
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appropriate conditions, the far-subdominant Boyer components, free of material constants
and proportional to h̄c/R. This was done by determining the exact normal modes, and then
summing their zero-point energies (Barton 2004, referred to as B.III). The drawback of the
method is that it does not explicitly quantize the dynamical variables (the Maxwell fields and
the displacements in the plasma), and therefore affords no insight into the energy density u,
nor into the forces responsible for the pressure P experienced by the shell. The Hamiltonian
approach which we now adopt supplies these wants under conditions where the coupling to
the quantized Maxwell fields is a weak perturbation, while Coulomb interactions continue to
be treated exactly; and it leads to the crucial Debye cut-off on surface-parallel wave numbers
in a way which is more conventional and perhaps more immediately persuasive. Thus the
present paper is a prequel as much as a sequel to B.III, whose general comments on older
work and on Boyer components will not be repeated. But it may be worth repeating, from
appendix D of B.III, that roughly speaking our theory is complementary to that developed
recently by Jaffe and his co-workers: theirs (unlike ours) is renormalizable in the orthodox
sense, but less realistic in that it does not as yet allow for a dispersive response of material to
field. For recent references see B.III, or Graham et al (2004).

Our own model is rooted in theories of plasmons on single base-planes in graphite (Fetter
1973) and on the giant carbon molecule C60 (Barton and Eberlein 1991). Some background,
supporting evidence and citations are given in B.III: here we shall merely specify the system
with the minimum of detail needed to make the argument self-contained.

1.2. Preliminaries

We study an infinitesimally thin spherical shell carrying a continuous fluid with mass and
charge densities nm, ne per unit area, plus an immobile, uniformly distributed, overall-
neutralizing background charge. The fluid displacement ξ is purely tangential. Its conjugate
will be called Π: in absence of coupling to the transverse Maxwell field, one has Π = nmξ̇.
We assume |ξ̇| � c, so that the Lorentz force is negligible, and take the field ξ to remain small
enough to allow systematic linearization in ξ and in ξ̇ or Π. Then the surface charge-density
reads

σ = −ne∇‖ · ξ. (1.1)

Radial and tangential vector components will be identified by subscripts r, ‖, but from ξ and
Π the subscripts ‖ are omitted as unnecessary.

Evidently, the model mimics n delocalized particles per unit area, call them electrons,
each with charge and mass e, m. The total number is

N = 4πR2n. (1.2)

The surface density n is related to some mean inter-electron distance a by

n ≡ 1/a2 (1.3)

where a, on molecules like C60, is of the order of a few Bohr radii, and compares with the
classical electron radius r0 according to1

a ∼ aB ≡ h̄2/me2, r0 ≡ e2/mc2, x ≡ r0/a ∼ (e2/h̄c)2 � (1/137)2. (1.4)

Besides x, we also define the parameters

X ≡ R/a, µ ≡ 4πxX = 4πr0R/a2 = 4πe2R/mc2a2. (1.5)

1 We use unrationalized Gaussian units: thus e2/h̄c � 1/137.
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As before, we consider only N � 1, which entails X � 1 (an obviously neccessary
condition for any hydrodynamic model); but now we focus exclusively on x � 1. The crucial
parameter is µ. In the macroscopic scenario, where X is so large that µ � 1, retardation is
of the essence, perturbative attempts never get off the ground, and one must use the methods
of B.III. Here, by contrast, we restrict ourselves to the molecular scenario (with parameters
roughly comparable to those of C60), where µ � 1. This scenario is approachable through
the nonretarded model to be introduced presently.

We adopt the Coulomb gauge:

E = −∇� + ET , ET = −Ȧ/c, B = ∇ × A, ∇ · A = 0. (1.6)

Then our physical system is formally defined by the minimal-coupling Hamiltonian

H = HNR + Hint + Hrad (1.7)

where2

HNR =
∫

dS
�2

2nm
+

1

2

∫ ∫
dS dS ′ σ(r)σ (r′)

|r − r′| , (1.8)

Hrad = 1

8π

∫
d3r

{
E2

T + B2}, (1.9)

Hint =
∫

dS

{
− e

mc
Π · A‖ +

ne2

2mc2
A2

‖

}
≡ Hint,1 + Hint,2. (1.10)

The
∫

dS . . . are two-dimensional integrals running over the shell:
∫

dS . . . ≡ R2
∫

d� . . . .

We call HNR the nonretarded (NR) Hamiltonian (reached, formally, in the limit c → ∞).
Taken on its own it defines the NR model, which would describe the shell if radiative effects
were wholly negligible. Evidently Hrad is the Hamiltonian for the free Maxwell field, and
Hint the radiative coupling. Though the NR model as such has limited application beyond
fullerenes like C60, it is worth attention, because it identifies important qualitative features of
u and of P that are surprising, and likely to survive even when retardation is allowed for.

For comparisons with B.III, we shall generally display B in the format

B = (h̄c/4πR)H, (1.11)

although in a nonretarded model the dimensional prefactor h̄c/4πR looks out of place. Then
Boyer components are identifiable as contributions to H that are pure numbers (featuring
neither X nor x); this makes it obvious almost from the start that there can be no such
components in the molecular scenario, where B is dominated by terms proportional to µ1/2,
with all corrections proportional to higher powers of µ.

Finally it needs repeating from B.III that, like all pure plasma models, ours too makes
B positive, because it excludes the interaction between the background ions, or the covalent
bonds between the carbon atoms, which are responsible for the cohesion of real metals and of
real fullerenes, respectively.

2 The second term of (1.8) is just
∫

dS σ�/2, with � the instantaneous Coulomb potential due to σ itself. An
externally applied electrostatic potential �ext would introduce a further term

∫
dS σ�ext. In our linearized model,

the shell responds to such a potential exactly as would a perfectly conducting sphere having the same radius. In other
words, this static response is independent of the model parameters nm and ne.
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1.3. Preview and conclusions

Section 2 sets up the NR model, motivates a Debye cut-off L on the angular momenta of the
normal modes (equivalent to a cut-off on their surface-parallel wave numbers), and writes
down the consequent approximation BNR to the zero-point energy. Section 3, the core of the
paper, proceeds to the explicit quantum mechanics of the model. In section 3.1, we determine
the quantized field operators ξ and Π; and find also the equal-time commutation rules, which
look elegant, but are not very helpful in calculations. The most suggestive of our results are
then reported in sections 3.2 and 3.3.

Section 3.2 determines the distribution u(r, L) of the Coulomb energy, and shows that
for large L it is concentrated in the region (R − a) � r � (R + a). Hence in the formal
perfect-reflector limit a → 0 (entailing x → ∞), the potential energy too would become
localized in the shell, as the kinetic energy automatically is in any case. The conclusion is
interesting because B.III showed that BNR remains the dominant part of the properly retarded
energy B even in the macroscopic scenario. Thus we may be looking at one of the reasons
why the dominant part of B fails to show up in older calculations, which consider only fields
and energies outside the material. (See B.III for a critique of and some references to older
methods.) Appendix C analyses the limit of u(r, L) as L → ∞ with r 
= R, a limit which
plays no role in our theory but may help comparisons with others.

Section 3.3 uses the principle of virtual work to determine, from BNR, the total pressure
P experienced by the shell; and it shows that the Maxwell (here the electrostatic) stress tensor
accounts only for one-third of P, the rest coming from forces exerted inside the material
by the zero-point oscillations of the charge carriers. Seeing that P cannot be found from the
electrostatic stresses alone, one might reasonably conjecture that the full Maxwell stress tensor
would prove similarly inadequate in theories using not just HNR but the full Hamiltonian H.

Finally, section 4 explores the effects of Hint treated as a weak perturbation of a zero-order
Hamiltonian3 H0 ≡ HNR + Hrad. These effects convert the discrete-frequency eigenmodes of
HNR into finite-width resonances in the entirely continuous frequency spectrum of eigenmodes
of the total Hamiltonian H = H0 + Hint. More specifically, perturbation theory reproduces
the widths and frequency shifts implied by the exact classical solutions already known from
B.III. Details regarding this correspondence are relegated to appendix A, and the systematic
approximation to the quantum shifts �l to appendix B.

2. The nonretarded model

We collect some basic equations of the NR plasma model, as a preliminary to discussing its
quantum mechanics in section 3, and then extending the discussion in section 4 from HNR to
the full Hamiltonian H.

2.1. Equations of motion and normal modes

The NR model admits only instantaneous Coulomb potentials �, whence the electric field is
purely longitudinal:

E = −∇�. (2.1)

3 Risking a commonplace regarding plasmas, we stress that perturbation theory to any finite order can never capture
the effects of the potential-energy (the second) term in HNR. In our model, this is obvious from the mismatch of
powers of n between the effective coupling-strength parameter, which is proportional to n2, and the eigenfrequencies,
which are proportional to n1/2.
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Accordingly, Newton’s second law reads

ξ̈ = −(e/m)∇‖� ⇒ ξ ≡ −∇‖�, �̈ = (e/m)�, (2.2)

with the displacement potential �(�) defined only on the shell. Thus ξ is curl-free, and for
any normal mode one has

�ω and �ω ∝ exp(−iωt) ⇒ �ω = −(e/mω2)�ω. (2.3)

More explicitly, (2.2), (2.3) and (1.1) entail4

ξ(�) = −∇‖�(�), �ω(�) = −(e/mω2)�ω(R,�), σ (�) = ne∇2
‖�(�). (2.4)

The normal modes of HNR are labelled5 l, m (where −l � m � l); the frequencies are
independent of m in virtue of the spherical symmetry, and will be written as ωl . They are
found (Barton and Eberlein 1991) by solving Poisson’s equation for �ω off the shell, subject
to Gauss’s law on the shell:

∇2�(r 
= R,�) = 0, �(r → ∞,�) = 0,
(2.5)

discont � = 0, discont Er = 4πσ ⇒ discont
∂�ω

∂r
= 4πne2

mω2
∇2

‖�ω.

This yields[
− (l + 1)Rl+1

rl+2
− lr l−1

Rl

]
r=R

= −4πne2

mω2
l

· l(l + 1)

R2

⇒ ωl =
√

4πne2

mR
ω̂l = c

R
µ1/2ω̂l, ω̂l ≡

√
l(l + 1)

(2l + 1)
, (l � 1). (2.6)

2.2. Debye cut-off

The model yields a convergent expression for B only if one imposes a cut-off l � L on the
normal modes. To justify it, we recall that the hydrodynamic model is meant to mimic an
electron gas which in fact is granular; and then reason, as in Debye’s theory of the specific heat
of solids, that the number of modes should equal the number of effective degrees of freedom of
the gas. Since the electrons are confined to a 2D surface, and since their motion is irrotational,
there is only one degree of freedom per particle, whence the cut-off reads

l � L, N = 4πX2 ≡
L∑

l=1

(2l + 1) = L2 + 2L ⇒ L =
√

N + 1 − 1 � 2π1/2X + · · · .

(2.7)

Another way to understand it is to note that modes with given l have tangential wave numbers
of order k‖ ∼ l/R, while a 2D gas with mean interparticle spacing a can support only waves
with ak‖ � 1. Hence l � R/a = X ∼ L, with the last equality from (2.7).

For much the same reasons, the shell cannot couple appreciably to photons having angular
momenta l � L. The calculation of radiative shifts in section 4.3 accommodates this fact

4 On the sphere, and assuming differentiable Π(�), it is impossible to have purely inertial flows at constant density,
which would generate no NR forces apart from the constraints restricting the fluid to r = R. In other words there are
no flows with ∇‖ ·Π = 0, and therefore no pure rotations of any kind. (Presumably, this conclusion is related to the
fact that a single particle on the sphere can move only along a great circle.) One can see the impossibility by treating
Π as the field variable in a Lagrangean

∫
dS{�2/2nm − α(�)∇‖ ·Π}, with α an undetermined multiplier used to

enforce ∇‖ ·Π = 0. Alternatively, it can be shown that without pressure gradients (which our model excludes) there
are no solutions to the nonlinear Euler equations for the velocity of the fluid.
5 The context will prevent confusion between the m for magnetic quantum number and the m for mass.
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by virtue of the selection rules; but in the fully-retarded nonperturbative calculations in B.III,
where there are no discrete modes, the restriction is fundamental and is invoked right at the
start, so that modes with high l never enter in the first place. In that context, and also in
principle, it proves important that subject to (2.7) the theory is indeed well defined, needing
no cut-offs on photon frequencies: the point is that for frequency cut-offs there is no physical
justification at all.

2.3. The zero-point energy

The ground-state energy6 is

BNR =
L∑

l=1

(2l + 1)h̄ωl/2 = h̄
√

(πne2/mR)SNR(L) = h̄
√

N/4mR3SNR(L), (2.8)

SNR(L) ≡
L∑

l=1

√
l(l + 1)(2l + 1)

=
√

2

{
2

5
L5/2 + L3/2 +

7

16
L1/2 − 1

32
L−1/2 + O(L−3/2)

}
+ CNR

= 16π5/4

5
X5/2 +

3π1/4

8
X1/2 + CNR + O(X−3/2), CNR � −0.127, (2.9)

where the approximation in terms of L stems from the Abel–Plana formula (cf B.III). When
(2.7) yields a noninteger L � 1, as generally it does, one fudges by substituting from (2.7)
directly into (2.9). Thus

BNR = h̄

√
e2

ma7
·R2 · 16π7/4

5
{1 + O(X−2)} (2.10)

or, in our standard format,

BNR = h̄c

4πR
HNR, HNR = µ1/2 32π9/4

5
X5/2{1 + O(X−2)}. (2.11)

3. Quantum mechanics of the NR model

The main point of the explicit quantization in section 3.1 is that it allows one to determine
the distribution of the energy (section 3.2), and to analyse the pressure (section 3.3). As
anticipated in the introduction, both results have surprising features which it is plausible to
think will survive even when retardation (i.e. finite c) is allowed for. Section 3.4 merely
confronts the known pressure on an undivided shell with a speculative but possibly shocking
argument about the force between its two halves when it is split.

3.1. Quantization of HNR, and the quantized potentials

To quantize explicitly, one diagonalizes

HNR =
L∑

l=1

(h̄ωl/2)

l∑
m=−l

{
a+

lmalm + alma+
lm

}
,

[
alm, a+

l′m′
] = δll′δmm′ , (3.1)

6 In the hydrodynamic model there is no Coulomb self-energy to be subtracted, because the Coulomb energy Q2/2R

of a given amount of fluid vanishes at infinite dilution, i.e. as R → ∞ at fixed Q.
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by expanding

�(�, r, t) =
L∑

l=1

l∑
m=−l

√
2πh̄ωl

(2l + 1)R
alm e−iωl tYlm(�)

×
{

θ(R − r)
( r

R

)l

+ θ(r − R)

(
R

r

)l+1
}

+ Hc (3.2)

where θ is the Heaviside step function, and Hc stands for Hermitean conjugate. The expansions
of � and thereby of ξ and Π then follow from (2.2). In particular

�(�, t) = − e

m

L∑
l=1

l∑
m=−l

√
2πh̄

(2l + 1)ω3
l R

alm e−iωl tYlm(�) + Hc, (3.3)

Π(�, t) = −ine

L∑
l=1

l∑
m=−l

√
2πh̄

(2l + 1)ωlR
alm e−iωl t∇Ylm(�) + Hc. (3.4)

The ground state |0〉 is defined by alm|0〉 = 0 for all (l,m). Equations (3.2)–(3.4) indicate the
time-dependence in the Heisenberg picture of the NR model, or in the interaction picture of
the complete theory with Hint as the perturbation.

Since the NR model makes ξ and thereby Π irrotational, their components are not
independent degrees of freedom. This complicates the equal-time commutation rules7, which
can be expressed in many different ways. As a rule, the forms most convenient in practice
are those found directly from the normal-mode expansions and from (3.1); for instance, the
simplest (in fact the only tolerable) way to confirm Π = nmξ̇ is to use the Heisenberg equations
of motion. Versions formulated in coordinate space prove far harder to use, though the eye
may find them more pleasing. The most elegant form is probably the contracted relation

[�(�),∇′ ·Π(�′)] = (ih̄/R2)

L∑
l=1

l∑
m=−l

Ylm(�)Y ∗
lm(�′). (3.5)

In the no-cut-off limit L → ∞ this yields

[�(�),∇′ · �(�′)] = (ih̄/R2){δ(� − �′) − 1/4π} (no cut-off) (3.6)

where −1/4π inside the braces corrects for the absence of modes with l = 0.
In the same limit, the full tensorial rule reads

Cjj ′(�,�′) ≡ [ξj (�),�j ′(�′)] = − ih̄

4π
∇j∇′

j ′D(�,�′) (no cut-off), (3.7)

D(�,�′) =
∞∑
l=1

(2l + 1)

l(l + 1)
Pl(cos χ), cos χ ≡ r̂ · r̂′, (3.8)

where r = (R,�), r′ = (R,�′), hats denote unit vectors and the vector indices j, j ′ are
tangential to the sphere at �,�′, respectively. Splitting (2l + 1)/ l(l + 1) = 1/l + 1/(l + 1), it is
not too difficult to sum both terms over l (see, e.g. Barton 1989). Recombination then yields

D(�,�′) = −1 + log(2) − log(1 − cos χ)

where only the second logarithm contributes to the derivatives:

Cjj ′(�,�′) = ih̄

4π
∇j∇′

j ′ log(1 − cos χ). (3.9)

7 Similar complications beset 3D plasmas: see, e.g., Barton (1979).
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To visualize this, we choose the z and the x axes so that � is at the North pole (θ = 0), and
�′ = (θ ′ = χ, φ′ = 0). Then it becomes clear that the vector ∇′ points along θ̂

′
at �′, while

the vector ∇ points along −θ̂ at �: in general, the two vectors point in opposite directions
along the great circle connecting �′ and �. The commutators between other components
of ξ and Π vanish. On differentiating with axes chosen as just described, the one nonzero
component of the tensor turns out to read

Cθθ ′ = ih̄

8πR2 sin2(χ/2)
= ih̄

2π |r − r′|2 . (3.10)

3.2. Locating the energy

Since each normal mode constitutes a simple-harmonic oscillator, the virial theorem shows
that the mean kinetic energy is half the total energy, i.e. that 〈0| ∫ dS �2/2nm|0〉 = BNR/2.
Thus half of BNR is automatically localized on the shell. The other half is Coulomb potential
energy, distributed with a density u(r, L) = 〈0|(∇�)2/8π |0〉. We proceed to demonstrate that
for L � 1 it is, roughly speaking, confined to distances of order a from the shell.

To study u, we use (3.2) for �, exploit isotropy to write u = ∫
d�u/4π , and after an

integration by parts find straightforwardly that8

u(r, L) = 1

8π

∫
d�

4π
〈0|∇� · ∇�|0〉 = 1

8π

∫
d�

4π
〈0|

{
(∇r�)2 +

l(l + 1)

r2
�2

}
|0〉

= 1

16πR3

L∑
l=1

h̄ωl(2l + 1)

{
θ(R − r)l

( r

R

)2l−2
+ θ(r − R)(l + 1)

(
R

r

)2l+4
}

.

(3.11)

This expression is easier to appreciate in terms of dimensionless variables featuring the
energy β per unit surface area, and distances measured from the shell in units of a:

β(L) ≡ BNR/4πR2, ξ ≡ |r − R|/a, ρ(ξ, L) ≡ au(r, L)/β(L), (3.12)

ρ(ξ, L)

= (1/2L)
∑L

l=1(2l + 1)ω̂l{θ(R − r)l(1 − ξ/L)2l−2 + θ(r − R)(l + 1)(1 + ξ/L)−2l−4}∑L
l=1(2l + 1)ω̂l

.

(3.13)

Through L, this expression depends on X as well as on ξ ; but for L � 1 it simplifies very
considerably. In that case both the numerator and the denominator are dominated by large
l � L. Accordingly we approximate

(1 ± ξ/L) = exp log(1 ± ξ/L) � exp(±ξ/L); (3.14)

keep factors exp(±lξ/L) but set exp(±ξ/L) → 1; in the denominator replace
∑

l → ∫
dl;

and find eventually that in the limit (where numerator and denominator both diverge)
ρ(ξ) ≡ ρ(ξ,∞) is the same monotonically decreasing positive function of ξ on both sides of
the shell9:

8 Curiously, u(r = 0) is nonzero: the mean-square electric field fails to vanish at the origin.
9 In the limit the left-hand side of

∫ ∞
0 dr r2[u] = βR2/2 reduces to 2R2

∫ ∞
0 a dξ [βρ(ξ)/a] = 2βR2

∫ ∞
0 dξ ρ(ξ),

whence (3.15) should satisfy the norming condition
∫ ∞

0 dξ ρ(ξ) = 1/4, as indeed it does.
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ρ(ξ, L � 1) � ρ(ξ) ≡ lim
L→∞

ρ(ξ, L) = lim
L→∞

5

4L7/2

L∑
l=1

l5/2 exp(−2lξ/L)

= 5

512

{
15

√
2πξ−7/2erf(

√
2ξ) − e−2ξ

[
64

ξ
+

80

ξ 2
+

60

ξ 3

]}
, (3.15)

ρ(ξ � 1) = 5

14
− 5ξ

9
+

5ξ 2

11
+ · · · , ρ(ξ � 1) = 75

√
2π

512
ξ−7/2 + O

(
e−2ξ

ξ

)
. (3.16)

The mere fact that the limit is well defined makes it a function of ξ alone: this suffices to
verify that the energy density is indeed localized in the way described above. (Moreover, with
increasing L the approximation ρ(ξ) approaches the true ρ(ξ, L) quite fast. For instance, as
r rises from 0 to R, numerical evaluation shows that ρ(ξ)/ρ(ξ, 10) falls from 0.969 to 0.893,
while ρ(ξ)/ρ(ξ, 100) falls from 0.997 only to 0.989.)

Finally, for comparison with other theories, appendix C steps outside our own to consider
the so-called no-cut-off limit u∞(r) ≡ limL→∞ u(r, L). This is a very different thing
from the scaled function ρ(ξ) used above as a mere approximation to ρ(ξ, L � 1): the
definition (3.12) shows that ρ(ξ) is the limit L → ∞ of the ratio u(r, L)/β(L), whereas the
ratio of the limits u(r, L → ∞)/β(L → ∞) vanishes in the sense that β(L → ∞) diverges.

3.3. Pressures and forces

The principle of virtual work equates the change in10 B to the work done by the total pressure
P in small virtual variations of R:

P = − 1

4πR2

(
∂B

∂R

)
N

= − 1

4πR2

(
∂B

∂R

)
L

= − 1

4πR2

(
−3B

2R

)
= 3B

8πR3
. (3.17)

The third step is obvious from (2.8).
The total force between say the northern and southern hemispheres is a repulsion

F = πR2P. (3.18)

One can understand this either as the sum of the northward components of the forces acting
on all infinitesimally small surface elements of the northern hemisphere, or more easily as the
total force that would be exerted across the equatorial plane by an excess pressure P in the
interior.

To derive (3.17) directly rather than through the principle of virtual work, one must first
realize that there are two quite different contributions to P, one electrostatic and the other
mechanical.

The outward electrostatic force per unit area is σEr,ave, where

σ = {Er(R+) − Er(R−)}/4π, Er,ave ≡ {Er(R+) + Er(R−)}/2.

Thus the electrostatic pressure reads

Pes = 〈0|σEr,ave|0〉 = 〈0|{E2
r (R+) − E2

r (R−)
}/

8π |0〉, (3.19)

as expected from the jump in the rr component
{
E2

r − E2
‖
}/

8π of the electrostatic part
of the Maxwell stress tensor, given that E2

‖ is continuous. Since E = −∇�, the vacuum

10 To ease the typography, section 3.3 omits the subscript NR that B and P ought to carry.
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expectation-value follows readily from (3.2):

Pes = 1

8π

L∑
l=1

[
2πh̄ωl

(2l + 1)R

]
1

R2
[(l + 1)2 − l2]

l∑
m=−l

|Ylm(�)|2

= (1/16πR3)

L∑
l=1

(2l + 1)h̄ωl = B/8πR3. (3.20)

In addition to Pes there is also an outward mechanical force per unit area, stemming from
the surface tension � of the fluid. To identify it we recall that the pressure of an ideal 3D gas
is νmv2/3, with v2 the mean-square speed of the particles, and ν the number per unit volume.
The 2D analogue of this formula yields a tangential stress in the shell (a force across unit
length), related to the surface tension by

−� = nmξ̇
2
/2 = Π2/2nm. (3.21)

On any element of the shell this produces the same force as would an excess pressure −2�/R,
by the argument familiar from soap bubbles. (Again, consider the northern hemisphere. It
experiences a net southward force from the surface tension acting across the equator. If this
force is ascribed instead to an excess pressure in the interior, then, by the same argument as
we used for Pes, one has 2πR × (surface tension) = πR2 × (excess pressure).) Accordingly

Pmech = (2/R)〈0|(−�)|0〉 = B/4πR3. (3.22)

In view of (3.21), the expectation value follows from the virial theorem and from isotropy by
the same argument as was used in section 3.2: 〈0|(−�)|0〉 = (B/2)/4πR2.

Combining, we obtain the total pressure

P = Pes + Pmech = 3B/8πR3, (3.23)

conformably with (3.17).
Regarding its operational significance, we recall that P stems from the positive energy B

due directly to the charged fluid, which mimics only the conduction electrons. To stabilize
the structure there must be other forces, attractive at long range to stop it from disintegrating,
and repulsive at short range to stop it from collapsing. Thus one might try to elaborate the
model as a thin shell made of ordinary elastic material with given elastic moduli, and ask how
it would react when P is switched on (see, e.g., Landau and Lifshitz (1986)).

3.4. The force between severed hemispheres?

What happens to the force F if the sphere is cut along the equator, without appreciably
separating the hemispheres?

Cutting entails boundary conditions on the north–south component of the fluid
displacements ξ along the cut, and allows line charges to build up there. Hence it rearranges the
normal modes, changes their frequencies and presumably eliminates from F any contribution
like πR2Pmech. In short (and by contrast to insulators), the cutting process certainly affects the
forces. Pending detailed calculations, which would be very laborious, it is tempting to assert,
as an almost theorem, that F becomes attractive. An almost proof runs as follows. (i) Each
hemisphere by itself effectively consists of a set of normal-mode oscillators; (ii) the Coulomb
interaction between the hemispheres is bilinear in the creation/annihilation operators, whence
it has zero expectation value in the uncoupled direct-product ground state; (iii) therefore it
lowers the energy (proved variationally); whence (iv) the coupling should become weaker and
the ground-state energy should rise (become less negative) as the hemispheres separate.

Of course this particular argument fails for separations � 2πc/ω1, where retardation
becomes essential.
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4. Radiative coupling: widths and shifts

We explore the effects of Hint treated perturbatively. They turn the discrete-frequency modes
of the NR model into the lowest TM resonances in the (wholly continuous) frequency spectrum
of the true Maxwellian system. It is best to start by quantizing the free electromagnetic field in
multipolar form, as in section 4.1. The transition rates wl are then found in section 4.2, and the
energy shifts �l in section 4.3. They are shown to reproduce, under appropriate conditions, the
widths γl of the resonances, and their frequency shifts �ωl away from ωl , as determined from
the classically calculated phase shifts. Section 4.3 also shows that the dominant component
of the total second-order quantal energy shift tallies with the corresponding part of B found
nonperturbatively in B.III. The systematics of the �l are relegated to appendix B.

4.1. Multipolar quantization of the free Maxwell field

Recall that we work in the Coulomb gauge11, with (1.6).
We shall need the standard scalar multipole amplitudes

ϕlmk(r) ≡ il

√
2

π
jl(kr)Ylm(�), ∇2ϕlmk = −k2ϕlmk, (4.1)

L ≡ −ir × ∇, L2ϕlmk = l(l + 1)ϕlmk, Lzϕlmk = mϕlmk,
(4.2)∫

d3r ϕ∗
lmk(r)ϕl′m′k′(r) = δll′δmm′δ(k − k′)/kk′.

The vector potentials of the individual multipole fields are given in terms of the ϕlmk by
Bouwkamp and Casimir (1954) (see also Jackson (1975), section 16.2). We change their
labels e, m to TM, TE, and define

AT E
lmk ≡ 1√

l(l + 1)
Lϕlmk, AT M

lmk ≡ 1

k
∇ × AT E

lmk, (l � 1), (4.3)

so that ∫
d3r As∗

lmk · As ′
l′m′k′ = δss ′δll′δmm′δ(k − k′)/kk′, s = T E, T M. (4.4)

To separate the tangential from the radial components of AT M
lmk , one can use equation (16.49)

from Jackson (1975):

i∇ × L = r∇2 − ∇(1 + r · ∇) = r∇2 − ∇ ∂

∂r
r

⇒ (
AT M

lmk

)
‖ =

√
2

π
j̃ ′

l (kr)
i

k
√

l(l + 1)
∇Ylm (4.5)

where the Riccati–Bessel functions are defined by

j̃ l(z) ≡ zjl(z) (4.6)

and the prime on j̃ ′
l(kr) signifies the derivative with respect to the argument kr; and similarly

for ỹl .
To expand A in terms of the As

lmk , one chooses coefficients b so as to ensure that the free
Maxwell Hamiltonian assumes the standard form

Hrad =
∑

s

∞∑
l=1

l∑
m=−l

∫ ∞

0
dk k2 h̄ck

2

{
b

(s)+
lmk b

(s)
lmk + b

(s)
lmkb

(s)+
lmk

}
(4.7)

11 By contrast, B.III gave the exact normal modes in terms of their B and of their total E fields: and the total E field of
TM modes is not divergence-free (i.e. not purely transverse), because it has a discontinuity across the shell as dictated
by Gauss’s law.
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where [
b

(s)
lmkb

(s ′)+
l′m′k′ − b

(s ′)+
l′m′k′b

(s)
lmk

] = δss ′δll′δmm′δ(k − k′)/kk′. (4.8)

This is achieved by

A(r, t) =
∑

s

∞∑
l=1

l∑
m=−l

∫ ∞

0
dk

√
2πh̄ck3b

(s)
lmk e−icktAs

lmk(r) + Hc. (4.9)

4.2. Widths

The linear coupling

Hint,1 = −(e/mc)

∫
dS Π · A‖ (4.10)

causes the one-plasmon state a+
lm|0〉 to decay into one-TM-photon states bT M+

lmk |0〉. The matrix
element responsible reads

Mlk ≡ 〈0|bT M
lmkHint,1a

+
lm|0〉 = ine2R2

mc

[
2πh̄c

k
· 2πh̄

(2l + 1)ωlR

]1/2 ∫
d� AT M∗

lmk (R,�) · ∇Ylm

= 2πh̄ne2

m

[
l(l + 1)

(2l + 1)ωlcRk3

]1/2
√

2

π
j̃ ′

l(kR) (4.11)

where the last line follows after some manipulation involving an integration by parts. The
selection rules on Mlk stem from spherical symmetry and reflection invariance (conservation
of angular momentum and of parity): it is easily verified that the analogous matrix element
with a TE photon would vanish.

The Golden Rule of time-dependent perturbation theory then gives the decay rate

wl = 2π

h̄

∫ ∞

0
dk k2δ(h̄ωl − h̄ck)|Mlk|2 = 4πne2

mc
j̃ ′2

l (KlR) = cµ

R
j̃ ′2

l (KlR), Kl ≡ ωl/c.

(4.12)

Finally, in the molecular scenario where µ � 1, we see that

KlR = ωlR

c
= ω̂l

√
µ � 1 ⇒ j̃ ′2

l (KlR) � (l + 1)2

(2l + 1)!!2
(KlR)2l (4.13)

whence

wl � c

R
· (l + 1)2

(2l + 1)!!2
· ω̂2l

l µl+1. (4.14)

Appendix A verifies that wl agrees with the value inferred from the width of the lowest
TM resonance as determined directly from the phase shift, i.e. without appeal to quantum
mechanics.

4.3. Shifts

The interaction with the quantized Maxwell field changes the unperturbed ground-state energy
h̄ωl/2 of each NR normal-mode oscillator. We consider the change only to order e2. As
explained in B.III, the perturbation 〈0|Hint,2|0〉 is irrelevant to B, because it is just the self-
energy of the charge carriers; hence we consider only the shifts �l due to Hint,1. In virtue of
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the selection rules, �l features only the intermediate states |〉 ≡ a+
l,−mbT M+

lmk |0〉, and it is easily
seen that |〈|Hint,1|0〉|2 = |Mlk|2. Hence second-order perturbation theory yields

�l = −
∫ ∞

0
dk k2 |Mlk|2

h̄[ωl + ck]
= − h̄c

4πR
· 2µ3/2ω̂lJl (ηl), (4.15)

Jl (η) ≡
∫ ∞

0

dx

x(x + η)
j̃ ′2

l (x), ηl ≡ Rωl

c
= µ1/2ω̂l . (4.16)

An asymptotic expansion when η � 1 is derived in appendix B. Here we keep only the
dominant term, obtained by setting η = 0:

�l � − h̄c

4πR
µ3/2πω̂lQl , Ql ≡ (2l2 + 2l + 3)

(2l − 1)(2l + 1)(2l + 3)
, (4.17)

�l

(h̄ωl/2)
� −1

2
µQl . (4.18)

The ratio reminds one that perturbation theory works only if µ � 1.
The shift �l may be compared with two other results found very differently.
First, equation (A.8) in appendix A shows that �l/h̄ from (4.17) equals �ωl/2, where �ωl

is the difference between ωl and the lowest TM resonance frequency as determined directly
from the phase shifts.

Second, B.III supplies the fully retarded contributions Bl to B from each (l,m), albeit
only in an approximation which is unwarranted unless l � 1 (these being the values which
dominate B when R � a). The results to be compared with (4.17) are those for small µ,
namely

Bl = (h̄c/2πR)Fl(α), α ≡ µ/(2l + 1) � 1.

Equations (4.22) and (6.3) of B.III give

Bl � h̄c

4R
(2l + 1)

[
µ

(2l + 1)

]1/2 {
1 − 1

4

[
µ

(2l + 1)

]
+ · · ·

}
, (4.19)

both terms stemming wholly from TM modes. For l � 1 the first term reduces as it should
to h̄ωl/2, and the ratio of the second to the first term becomes −µ/8l, the same as the ratio
dictated by (4.18) with Ql ∼ 1/4l.

Finally, the total radiative shift

�B ≡
L∑

l=1

(2l + 1)�l � − h̄c

4πR
· 2π7/4

3
µ3/2X3/2 (4.20)

follows from (4.17) on approximating
∑

l . . . → ∫ L dl . . . for L � 1. Comparison with
(2.11) then yields

�B/BNR � −(5/48π1/2)µX−1. (4.21)

Appendix A. Classical widths and frequency shifts from the Jost functions

We determine the frequencies and widths of the lowest resonances of the classical TM phase
shifts, and find that they tally, when they should, with quantum-mechanical results from
section 4 and from B.III.

The coupling to the Maxwell field dissolves the (l,m) plasmon mode of the NR model
(sharp frequency ωl) in the continuum of transverse-magnetic (l,m) photons, where it
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generates the lowest resonance. The resonance corresponds to the pole of the S matrix
due to the zero of the Jost function f T M

l (−q) nearest the origin in the lower-half complex q
plane, say at q = q1 − iq2:

f T M
l (−q) = 1 + i

µ

q
j̃ ′

l (q)h̃
(1)′
l (q) = 0 ⇒ q1 − iq2 − µj̃ ′

l(q)ỹ
′
l (q) + iµj̃ ′2

l (q) = 0.

(A.1)

The Jost function is quoted from B.III; we recall that q ≡ kR = ωR/c, and suppress the index
l that q ought to carry. The frequency shift �ωl and the width γl are given by

ωl + �ωl = cq1/R, γl = cq2/R. (A.2)

Small µ entails small |q|, and one expands j̃ ′
l(q) and ỹ

′
l (q) accordingly:

j̃ ′
l(q) = 1

(2l + 1)!!

{
(l + 1)ql − (l + 3)

2(2l + 3)
ql+2 + · · ·

}
, (A.3)

ỹ
′
l (q) = (2l − 1)!!

{
l

ql+1
+

(l − 2)

2(2l − 1)
· 1

ql−1
+ · · ·

}
. (A.4)

Consistency then allows at most two terms in each of the products j̃ ′
l ỹ

′
l and j̃ ′2

l , reducing (A.1)
to

(1 + µQl )q
2 − µω̂2

l + iµ
1

(2l + 1)!!2

{
(l + 1)2q2l+1 − (l + 1)(l + 3)

(2l + 3)
q2l+3

}
� 0, (A.5)

where Ql enters through an apparently fortuitous combination of coefficients originating from
(A.3) and (A.4), rather than as the integral (B.2) already quoted in (4.17).

To the accuracies we want one can proceed by successive approximations, q =
q(0) + q(1) + · · ·. Leading order merely confirms that q

(0)
1 = µ1/2ω̂l = ωlR/c, q

(0)
2 = 0.

Next one finds

γl � c

R
q

(1)
2 � 2πne2

mc

[
(l + 1)

(2l + 1)!!

]2

ω̂2l
l µl. (A.6)

Thus 2γl agrees as it should with the decay rate wl from (4.14).
Finally, the first two terms of (A.5) yield q1 through(

q
(0)
1 + q

(1)
1

)2 � µω̂2
l

/
(1 + µQl ) ⇒ q

(1)
1 � −µ3/2ω̂lQl/2. (A.7)

Then

�ωl � (c/R)q
(1)
1 = −(cµ3/2/2R)ω̂lQl (A.8)

tallies with the perturbative shift �l from (4.17), in the sense that h̄�ωl/2 = �l . The
agreement is welcome insurance against calculational errors, since the two methods follow
very different paths to the quite un-intuitive combination Ql .

Appendix B. Systematics of the shifts ∆l

For ηl � 1, an asymptotic approximation to Jl (η) in (4.15) and (4.16) emerges if one expands
its integrand by powers of η/x as far as one can without incurring a divergence at the lower
limit:

Jl (η) =
∫ ∞

0

dx

x(x + η)
j̃ ′2

l (x) =
∫ ∞

0

dx

x2
j̃ ′2

l

{
1 − η

x
+

η2

x2
+ · · ·

}
. (B.1)
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This admits one term when l = 1, three terms when l � 2 and so on. To find the general
term one integrates by parts (repeatedly), and eliminates some second derivatives through
j ′′
l = −2j ′

l /x − jl + l(l + 1)jl/x
2. Eventually one obtains∫ ∞

0

dx

xn
j̃ ′2

l =
{

1

2
n(n + 1) − l(l + 1)

} ∫ ∞

0

dx

xn
j 2
l +

∫ ∞

0

dx

xn−2
j 2
l ,

featuring the standard integrals∫ ∞

0

dx

xp
j 2
l = π�(p + 1)�(l + 1/2 − p/2)

2p+2�2(1 + p/2)�(l + 3/2 + p/2)
.

Then the first and second terms of (B.1), convergent respectively for l � 1 and for l � 2,
reduce to ∫ ∞

0

dx

x2
j̃ ′2

l = π

2
Ql ,

∫ ∞

0

dx

x3
j̃ ′2

l = 1

6
Pl , (B.2)

Ql ≡ (2l2 + 2l + 3)

(2l − 1)(2l + 1)(2l + 3)
, Pl ≡ (l2 + l + 6)

(l − 1)l(l + 1)(l + 2)
, (B.3)

with the Ql already quoted in (4.17). But for l = 1, the second term must be found by
evaluating J1(η) exactly (in terms of sine and cosine integrals) before approximating it for
small η. This leads to

J1(η) = 7π

30
− η

(
4

9
log

[
1

2η

]
− 4

9
E +

23

36

)
+ O(η2)

where E is Euler’s constant. From these results one constructs

�1 = − h̄c

4πR
· 2µ3/2ω̂1

{
7π

30
+ µ1/2ω̂1

(
4

9
log

[
1

2µ1/2ω̂1

]
− 4

9
E +

23

36

)
+ O

(
µω̂2

1

)}
, (B.4)

�l = − h̄c

4πR
· 2µ3/2ω̂l

{
π

2
Ql − µ1/2ω̂l

1

6
Pl + O

(
µω̂2

l

)}
, (l � 2). (B.5)

As regards orders of magnitude, let us ignore powers of X, and take x ≡ r0/a ∼ (e2/h̄c)2,
as in (1.4). Then (4.18) shows that the ratio of the first term of �l to h̄ωl is of order
µ ∼ x ∼ (e2/h̄c)2. In atomic physics this is the relative order of magnitude of the fine-structure
splitting, i.e. of the corrections for retardation and for the relativistic variation of inertial mass
with velocity. The second term of �l is smaller by a further factor of µ1/2 ∼ x1/2 ∼ e2/h̄c;
this makes it comparable to the Lamb shift, and calls for two final comments.

First, pending further analysis it is unclear whether our accuracy allows one to keep the
second and higher terms of (B.1), because comparable contributions might arise from higher
orders of perturbation theory, e.g., to fourth order in Hint,1, or jointly to second order in Hint,1

and first order in Hint,2. Second, structurally speaking the first term (with Jl (ηl) → Jl(0),
as in section 4.2) bears a resemblance to the component which the Bethe theory drops from
the atomic Lamb shift, on the grounds that it is cancelled by mass renormalization. (For
the standard theory, see e.g., Bethe and Salpeter (1957); for versions that admit retardation,
see, e.g., Grotch (1981), and also Au and Feinberg (1974).) The analogy lies in the fact that
the denominator of this term is independent of the plasmon excitation-energy h̄ωl . On the
other hand, the mere analogy is inconclusive, because the mass–density parameter nm in the
hydrodynamic model plays a role somewhat different from that of the electron mass in atomic
structure. For instance, in the absence of purely inertial flows on the sphere (cf footnote 4)
it is unclear how nm should be defined operationally (one may need to compare the sphere
with a plane); and the difference respecting Coulomb self-energies likewise inspires caution
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(cf footnote 6). Meanwhile, the writer suspects that in fact the analogy is false; but if it is
not, then to preserve the correspondence noted in section 4.3 between quantum and classical
shifts one would have to find mutually compatible mass-renormalization prescriptions in both
domains.

Appendix C. The energy density in the no-cut-off limit

In the spirit explained at the end of section 3.2 (and following the suggestion of an anonymous
referee), we take a brief look at

u∞(r) ≡ lim
L→∞

u(r, L), r 
= R,

commonly called the no-cut-off limit of u. All approaches agree that this limit is finite: the
crucial differences lie in whether, and how, they try to link B with integrals over u∞(r), seeing
that prima facie u∞(r) always diverges nonintegrably as r → R. We stress that in our model
the question is irrelevant, because the model gives B not through such an integral, but (in
the NR limit) directly as in section 2.3. A careful discussion of the role of u∞(r) in older
approaches is given by Candelas (1982), and in the modern renormalizable theory by Graham
et al (2002, 2003).

Bearing these provisos in mind, it is easy write the limit of (3.11) as

u∞(r) = h̄

16πR3

√
4πe2

mRa2
{θ(R − r)Uin + θ(r − R)Uout},

Uin =
∞∑
l=1

√
l3(l + 1)(2l + 1)zl−2, Uout =

∞∑
l=1

√
l(l + 1)3(2l + 1)/z2l+4, z ≡ r/R.

Far from the shell, i.e. for z � 1 or z � 1, the power series Uin, Uout converge
straightforwardly. Just inside/outside the shell, i.e. for z ∼ 1, we approximate as follows.
(i) Expand the square roots by falling powers of l : √

. . . = ∑∞
p=0 cpl5/2−p. (ii) Split each

U = U(1) + U(2), so that U(1) contains those sums over l that would diverge when z = 1,
namely those with p = 0, 1, 2, 3. (iii) In U(1), approximate each of the four

∑
l .. through the

Euler–Maclaurin formula truncated to
∞∑
l=1

f (l) �
∫ ∞

1
dl f + f (1)/2 − f ′(1)/12 + f ′′′(1)/120

where f (l) is lpz2l−2 in Uin and lp/z2l+4 in Uout. The integrals feature Whittaker functions,
whose asymptotics fortunately turn out to be quite simple. (iv) For z ≶ 1, set z = 1 ∓ y,
and expand asymptotically for small y, keeping terms that would diverge or remain finite
as y → 0+, but dropping terms that would vanish. (v) In U(2), set z = 1 and evaluate
it numerically as the convergent sum

∑∞
l=1

[√
. . . − ∑3

p=0 cpl5/2−p
]
. (vi) Combine this

approximation to U(2) with the finite term from step (iv). The end-results read

Uin

Uout

}
= 15

√
π

64
y−7/2 ± 51

√
π

256
y−5/2 +

345
√

π

2048
y−3/2 ± 1563

√
π

8192
y−1/2

−
{

0.104
0.246

}
+ (terms that vanish with y).

One must of course remember that our u is specific to Coulomb energies, whereas most prima-
facie comparable densities in the literature are meant to describe the distribution either of the
total energy, or of the contributions from the transverse Maxwell field.



Casimir’s spheres near the Coulomb limit 3741

References

Au C-K and Feinberg G 1974 Phys. Rev. A 9 1794 especially section 3
Barton G 1979 Rep Prog. Phys. 42 963 section 2.4
Barton G 1989 Elements of Green’s Functions and Propagation section H.5 (Oxford: Clarendon Press)
Barton G 2004 J. Phys. A: Math. Gen. 37 1011 referred to as B.III
Barton G and Eberlein C 1991 J. Chem. Phys. 95 1512
Bethe H A and Salpeter E S 1957 Quantum Mechanics of One- and Two-Electron Atoms section 19 (Berlin: Springer)
Bouwkamp C J and Casimir H B G 1954 Physica 20 539
Candelas P 1982 Ann. Phys., NY 143 241
Fetter A L 1973 Ann. Phys., NY 81 367
Graham N, Jaffe R L, Khemani V, Quandt M, Scandurra M and Weigel H 2002 Nucl. Phys. B 645 49
Graham N, Jaffe R L, Khemani V, Quandt M, Scandurra M and Weigel H 2003 Preprint hep-th/0207205 v3
Graham N, Jaffe R L, Khemani V, Quandt M, Schröder O and Weigel H 2004 Nucl. Phys. B 677 379
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